Softmax

torch.nn.modules.activation.Softmax
final class Softmax[D <: DType](dim: Int)(implicit evidence$1: Default[D]) extends TensorModule[D]

Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1.

Softmax is defined as: $$\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

When the input Tensor is a sparse tensor then the unspecifed values are treated as -inf.

Attributes

Source
Softmax.scala
Graph
Supertypes
trait TensorModule[D]
trait Tensor[D] => Tensor[D]
class Module
class Object
trait Matchable
class Any
Show all

Members list

Value members

Concrete methods

def apply(t: Tensor[D]): Tensor[D]

Attributes

Source
Softmax.scala
override def hasBias(): Boolean

Attributes

Definition Classes
Source
Softmax.scala

Inherited methods

def andThen[A](g: Tensor[D] => A): T1 => A

Attributes

Inherited from:
Function1
def apply(fn: Module => Unit): Module.this.type

Attributes

Inherited from:
Module
Source
Module.scala
def compose[A](g: A => Tensor[D]): A => R

Attributes

Inherited from:
Function1
def eval(): Unit

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala
def load(inputArchive: InputArchive): Unit

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala
def parameters: Seq[Tensor[_]]

Attributes

Inherited from:
Module
Source
Module.scala
def register[M <: Module](child: M, n: String)(using name: Name): M

Attributes

Inherited from:
Module
Source
Module.scala

Adds a buffer to the module.

Adds a buffer to the module.

Attributes

Inherited from:
Module
Source
Module.scala
def registerBuffer[D <: DType](t: Tensor[D], n: String)(using name: Name): Tensor[D]

Attributes

Inherited from:
Module
Source
Module.scala
def registerModule[M <: Module](child: M, n: String)(using name: Name): M

Attributes

Inherited from:
Module
Source
Module.scala
def registerParameter[D <: DType](t: Tensor[D], requiresGrad: Boolean, n: String)(using name: Name): Tensor[D]

Attributes

Inherited from:
Module
Source
Module.scala
def save(outputArchive: OutputArchive): Unit

Attributes

Inherited from:
Module
Source
Module.scala

Attributes

Inherited from:
Module
Source
Module.scala
def to(device: Device): Module.this.type

Attributes

Inherited from:
Module
Source
Module.scala
override def toString(): String

Returns a string representation of the object.

Returns a string representation of the object.

The default representation is platform dependent.

Attributes

Returns

a string representation of the object.

Definition Classes
Inherited from:
TensorModule
Source
Module.scala
def train(on: Boolean): Unit

Attributes

Inherited from:
Module
Source
Module.scala

Concrete fields

override val nativeModule: SoftmaxImpl

Attributes

Source
Softmax.scala